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It has been established that a crack has an important e!ect on the dynamic behavior of
a structure. This e!ect depends mainly on the location and depth of the crack. To identify the
location and depth of a crack on a structure, a method is presented in this paper which uses
hybrid neuro-genetic technique. Feed-forward multi-layer neural networks trained by
back-propagation are used to learn the input (the location and depth of a crack)}output (the
structural eigenfrequencies) relation of the structural system. With this trained neural
network, genetic algorithm is used to identify the crack location and depth minimizing the
di!erence from the measured frequencies.
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1. INTRODUCTION

Techniques to detect cracks and defects hidden in a structure and to evaluate their residual
life time are very important to assure the structural integrity of operating plants and
structures. Many researchers have investigated the potential of system identi"cation to
determine the properties of a structure. A state of damage could be detected by a reduction
in sti!ness. A crack, which occurs in a structural element, causes some local variations in its
sti!ness which a!ects the dynamics of the whole structure to a considerable degree. An
analysis of the changes is tried to identify the crack. Most of the studies on crack
identi"cation problem have adopted the modal parameter or the dynamic response to
identify the global sti!ness and mass matrices of a structure.

A crack in a structure introduces a local #exibility, which is a function of the crack depth.
This #exibility changes the sti!ness and the dynamic behavior of the structure. Chondros and
Dimarogonas [1, 2] considered the crack as a local elasticity, which e!ects the elasticity of the
whole cracked structure under consideration and related the crack depth with the frequency
decrease. Gounaris and Dimarogonas [3] have constructed a special cracked beam "nite
element and Papadopoulos and Dimarogonas [4] used a 6]6 compliance matrix, including
o!-diagonal terms, to simulate a cracked shaft and to study its dynamic behavior.

A number of papers deal with the problem of crack location and size identi"cation in
order to propose new, e$cient and more precise methods. Inagaki et al. [5] used
a procedure with eigenfrequency measurements to "nd the crack size and location. Leung
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[6] and Anifantis et al. [7] proposed crack identi"cation methods through the
measurements of the dynamic behavior in bending. Dimarogonas and Massouros [8]
investigated the dynamic behavior of a circumferentially cracked shaft in torsion and
proposed nomographs for "nding the crack depth and the location. Nikolakopoulos et al.
[9] presented the dependency of the structural eigenfrequencies on crack depth and location
in contour graph form. To identify the location and depth of a crack, they determined the
intersection points of the superposed contours that correspond to the measured
eigenfrequency variations caused by the presence of the crack. However, the intersecting
points of the superposed contours are not only di$cult to "nd but also incorrect to evaluate
since the procedure mainly depends on the physical eye.

The use of neural networks in detecting the damage has been developed for several years,
because of their ability to cope with the analysis of the structural damage without
the necessity for intensive computation. Recently, neural networks are expected to be
a necessity for intensive computation. Recently, neural networks are expected to be
a potential approach to detect the damage of the structure [10}14]. In these researches,
both the modal frequencies and the modal shapes are needed for the training of neural
network to detect the structural damage, since the frequency information alone is not
su$cient to train the neural network for the inverse problem of the crack identi"cation.

To identify the location and depth of a crack in a structure with only frequency
information, a method is presented in this paper which uses hybrid neuro-genetic technique.
Feed-forward multi-layer neural networks trained by back-propagation are used to learn
the input (the location and depth of a crack)}output (the structural eigenfrequencies)
relation of the structural system. With this trained neural network, genetic algorithm is used
to identify the crack location and depth minimizing the di!erence from the measured
frequencies. Our approach needs only the modal frequencies for we use hybrid
neuro-genetic techniques.

2. INVERSE ANALYSIS METHOD

The inverse analysis is generally de"ned as identifying the parameter set x*3X when
measured, or reference data y*3> and direct mapping t :XP> are known. Problems
with the non-linear direct mapping t are termed non-linear inverse problems. In practice,
deterministic models describe reality only in an idealized sense, and thus we may express the
input}output relation as follows:

y"t (x)#e, (1)

where e"e
1
#e

2
, and e

1
and e

2
are the errors in the measurement of y and those in the

model equations respectively.
In the analysis of "eld quantities shown in Figure 1, the model equations in general take

the form

¸ (k)/"q, (2)
Figure 1. Problems of "eld quantities: X: domain; C: boundary.
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where ¸, k, /, q are the di!erential operator, material property, "eld quantity and a source
term respectively.

Inverse problems for equation (2) can be classi"ed in terms of the parameter set to be
identi"ed: (a) domain X, (b) governing equations, (c) boundary conditions, (d) force or
source q applying in X, (e) material properties k de"ned in X and involved in the governing
equations [10, 11]. In these problems, the input and output vectors reside in the continuous
space. There are two main strategies for solving inverse problems. One is to solve a set of
equations and the other is to directly "nd the minimum or maximum of a certain function.
However, the former is worth noting the following di$culty: the inverse problem can always
be de"ned as an abstract theoretical concept. In general, inverse function is a subset of
original input, in fact such a subset could even be empty, so that the usual concept of
&&function'' as a &&one-to-one'' injection breaks down. Generally, it is reasonable to solve the
latter. Out of them, minimizing a least-squares criterion has been most widely used for
identi"cation.

In this approach, optimization techniques are used to "nd the input by adjusting them
until the measured, or reference data match the corresponding data computed from the
parameter set in the least-squares fashion, i.e.,

min f (x) (3a)

with the cost functional

f (x)"
m
+
i/1

k
i
(y*

i
!W

i
(x))2, (3b)

where k
i
is a weighting factor. Various calculus-based optimization techniques have been

intensively used to solve this optimization problem. These techniques can, however, fail if
errors contained in the model equations and in the measurement cause the objective
function to be complex. In such cases, the solution may result in a local minimum, unless
some regularization method is incorporated. The present study uses genetic algorithm,
which is signi"cantly promising for complex optimization.

3. STRUCTURE ANALYSIS

In the "nite element model of the damaged structure, the e!ect of the crack on the
behavior of the structure can be simulated through the introduction of the transfer matrices
which are methods for "nding the sti!ness matrix. A planar frame structure can be modelled
using two-dimensional beam elements having three degrees of freedom (d.o.f.) (d

x
, d

y
, h

z
) per

node, that is, with extension and bending, as in Figure 2.
The corresponding sti!ness and consistent mass local matrices [15] are

[K
e
]"

EI
zz

¸3

b¸2 0 0 !b¸2 0 0

0 12 6¸ 0 !12 6¸

0 6¸ 4¸2 0 !6¸ 2¸2

!b¸2 0 0 b¸2 0 0

0 !12 !6¸ 0 12 !6¸

0 6¸ 2¸2 0 !6¸ 4¸2

, (4)



Figure 2. A beam "nite element with extension and bending.
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[M
e
]"

oA¸

420

140 0 0 70 0 0

0 156 22¸ 0 54 !13¸

0 22¸ 4¸2 0 13¸ !3¸2

70 0 0 140 0 0

0 54 13¸ 0 156 !22¸

0 !13¸ !3¸2 0 !22¸ 4¸2

, (5)

where b"A/I
zz
, ¸ is the length of element e, and A is the cross-sectional area. E and o are

the modulus of elasticity and mass density, respectively, and I
zz

is the second moment of
inertia about the local z-axis.

From the Euler}Bernoulli theory for the above-mentioned d.o.f., the transfer matrix [15]
which transfers the state variables (displacement, force) from one node to the other node, is

[¹
e
]"

1 0 0
!¸

AE
0 0

0 1 ¸ 0
¸3

6E¸
zz

!

¸2

6EI
zz

0 0 1 0
¸2

2EI
zz

¸

EI
zz

0 0 0 !1 0 0

0 0 0 0 !1 0

0 0 0 0 ¸ !1

. (6)

A beam "nite element of length ¸
e
, containing a crack of depth a at distance ¸

1e
from its

left end, is depicted in Figure 3.
The crack introduces a local compliance in the structure. The state vectors at positions i,

C
L
, C

R
, and j are
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Figure 3. A cracked beam "nite element.
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If no force is acting between nodes i and j, then it can be derive from simple beam theory,
where the four state vectors are related as follows:

Mz
L
N"[¹

1
]Mz

i
N, Mz

R
N"[¹

C
]Mz

L
N, Mz

j
N"[¹

2
]Mz

R
N, (8a}c)

where [¹
1
] and [¹

2
] are the transfer matrices of the subelements C

L
!i and C

R
!j,

respectively, and [¹
C
] is the point transfer matrix due to the crack. Matrix [¹

C
], which

relates the state vectors on the left and right of the crack, is

[¹
C
]"

1 0 0 c
11

0 c
13

0 1 ¸ 0 c
22

0

0 0 1 c
31

0 c
33

0 0 0 !1 0 0

0 0 0 0 !1 0

0 0 0 0 0 !1

, (9)

where subscripts 1, 2 and 3 correspond to tension, shear and bending respectively. Terms
c
13

and c
31

, responsible for the coupling of tension and bending [3], are not considered
here, whereas the rest are known to be as follows [16]:

c
11
"

2U
1

E (1!l2)b
, c

22
"

2k2U
3

E (1!l2)b
, c

33
"

72U
2

E (1!l2)bh2
, (10a}c)

where l is the Poisson ratio, k is a constant which for rectangular cross-sections is known to
be 1)5 and U

i
are functions of the non-dimensional crack depth a/h [16]. These functions,

which are presented in Figure 4, are integrals of the empirical formulas used by Tada [17]
for the computation of stress intensity factors K

1
in single-edge notch specimens under pure

tension, bending and shear.
From equations (8a}c) the following is obtained:

Mz
j
N"[¹C

e
]Mz

i
N. (11)

The transfer matrix [¹C
e
] of the cracked element is written in the form
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D , (12)



Figure 4. U
i
versus a/h for single-edge notch specimen under pure tension, bending and shear.
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where [A
i
] are 3]3 submatrices. Equation (12) leads to the sti!ness matrix of the crack

element
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e
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![A2]~1[A
1
]

[A
3
]![A

4
][A

2
]~1[A

1
]

[A
2
]~1

[A
4
][A

2
]~1D. (13)

The equation of motion in matrix form is known to be

(!u2[M]#[K])MxN"M0N, (14)

where u is the eigenfrequency, and x the displacement vector. The above analysis serves to
identify the location and depth of a crack in a frame structure, just by measuring the
eigenfrequency variations.

4. NEURAL NETWORK AND GENETIC ALGORITHM

The cracked structure in this study is discretized into a set of elements and the crack is
assumed to be located within one of the elements. A neural network for the cracked
structure is trained to approximate the response of the structure by the data set prepared
through the "nite element analysis for various crack sizes and locations. For estimating the
location and size of a crack genetic algorithm is utilized, based on the trained neural
network. The neural network and the genetic algorithm are utilized for the so-called on-line
and the o!-line function. The o!-line performance is training the input}output pairs
including the location and depth of a crack as input and the structural eigenfrequencies as
output. The on-line performance is maximizing the "tness function evaluations of all
individuals in each generation. Neural network and genetic algorithm will be introduced in
the following sections, focused on our application.
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4.1. NEURAL NETWORK

Studies on neural networks have been motivated to imitate the way that the brain
operates. A network is described in terms of the individual neurons, the network
connectivity, the weights associated with various interconnections between neurons, and
the activation function for each neuron. The network maps an input vector from one space
to another. The mapping is not speci"ed, but is learned. The network is presented with
a given set of inputs and their associated outputs. The learning process is used to determine
proper interconnection weights and the network is trained to make proper associations
between the inputs and their corresponding outputs. Once trained, the network provides
rapid mapping of a given input into the desired output quantities. This, in turn, can be used
to enhance the e$ciency of the design process.

Consider a single neuron. This neuron receives a set of n inputs, x
i
, i"1,2, n, from its

neighboring neurons and a bias whose value is equal to one. Each of the inputs has a weight
(gain) w

ji
connecting between the ith and the jth units. The weighted sum of the inputs

determines the activity of a neuron, and is given as

net
j
"

n
+
j/1

w
ji
x
i
. (15)

A simple function is now used to provide a mapping from the n-dimensional space of the
inputs into a one-dimensional space which comprises of an output value a neuron sends to
its neighbors. The output of a neuron is a function of its activity:

y"f (net). (16)

Many types of neural networks have been proposed by changing the network topology,
node characteristics, and the learning procedures. In this study, we use the
back-propagation network, that is, a multi-layer feed-forward neural network topology
with one hidden-layer as shown in Figure 5. A back-propagation network consists of an
input layer, hidden layers, an output layer and adaptive connections between successive
layers. Back-propagation networks can be learned when presented with input-target output
pairs.

The back-propagation is used usually for its &&supervised'' learning. It is essentially
a special purpose steepest descent algorithm to adjust the w

ji
connection strengths, and

other additional internal parameters that are sometimes added to increase #exibility, to
Figure 5. Three-layer neural network utilized in this study.
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reproduce the output of given input}output training sets within a required error tolerance.
The following training error is de"ned:

E"

n
+

p/1

E
p
"

n
+

p/1

m
+
k/1

(¹
pk
!O

pk
)2, (17)

where E
p
is the square error for the pth training pattern, ¹

pk
is the teacher signal to the kth

unit in the output layer for the pth training pattern, O
pk

is the output signal from the kth unit
in the output layer for the pth training pattern, and m is the number of output units and n is
the number of patterns respectively. In the training process, the connection weights w

ji
is

modi"ed repeatedly based on the steepest descent method in order to minimize the above
square error:

Dw
ji
"!g

LE

Lw
ji

, wnew
ji

"wold
ji

#Dw
ji
, (18)

where g is the learning rate constant. The training is sensitive to the choices of the various
net learning parameters. The "rst parameter is the &&learning rate'' which essentially
groverns the &&step size'', a concept familiar to the optimization community, and the learning
rate constant should be updated according to the following rule:

Dg"G
#a

!bg

0

if DE'0 consistently,

if DE(0,

otherwise.

(19)

This learning rate approach is an adaptive learning constant. The second parameter is the
&&momentum coe$cient'' which forces the search to continue in the same direction so as to
aid the numerical stability, and furthermore, to go over local minima encountered in the
search. This scheme is implemented by giving a contribution from the previous time step to
each weight change:

Dw(n)"!g+E (n)#aDw(n!1), (20)

where a3[0, 1] is a momentum parameter and a value as 0)9 is often used. The momentum
term typically helps to speed up the convergence and to achieve an e$cient and more
reliable learning pro"le.

4.2. GENETIC ALGORITHM

Genetic algorithm is probabilistic optimization algorithm based on the model of natural
evolution and the algorithm has clearly demonstrated its capability to create good
approximate solutions in complex optimization problems. Figure 6 shows the fundamental
structure of the genetic algorithm.

First, a population of individuals, each represented by a vector, is initially generated at
random. The population then evolves towards better regions of the search space by means
of randomized processes of recombination, mutation and selection. In the recombination,
parental individuals breed o!spring's individuals by combining part of information from
parental individuals. The mutation forms new individuals by making large alterations with
small possibility to the o!spring individuals regardless of their inheritant information. With
the evaluation of "tness for all the individuals, the selection favorably selects individuals of
higher "tness to produce more often than those of lower "tness. These reproduction forms



Figure 6. Fundamental structure of the genetic algorithm.
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one generation of the evolutionary process, which corresponds to one iteration in the
algorithm, and the iteration is repeated until a given terminal criterion is satis"ed.

5. HYBRID NEURO-GENTIC TECHNIQUE FOR CRACK IDENTIFICATION

For the crack identi"cation, it is known that the crack parameters such as the location
and depth of a crack can be determined from the measured eigenfrequencies of structure.
This can be classi"ed as the inverse problem. In this study, hybrid neuro-genetic technique
is adopted to identify the crack parameters in a structure.

Overall procedure of this study is shown in Figure 7. There is preparation phase and
application phase. In the preparation phase, "rstly, the learning data of various sets of crack
parameters and the corresponding response of the structure, which is the eigenfrequency in
this study, are prepared by the computational structure analysis which is presented in
section 3. The neural network described in section 4 is adopted to approximate the response
of the cracked structure from the prepared learning data.

In the application phase the parameters which identify the crack are estimated by the
genetic algorithm described in section 4 using the trained neural network for the "tness
function evaluation.

5.1. NEURAL NETWORK TRAINING

The clamped}free beam of Figure 8 has a length of ¸"3 m, rectangular cross-section
B]H"0)2]0)2 m and contains a crack of depth a at a distance ¸

1
from the clamped end.

The material properties are E"2)07]1011 N/m2, l"0)3, and o"7700 kgm3. The beam
is discretized into 12 two-node "nite elements. For the preparation of the learning data, 10
sets of a crack depth a"0)01, 0)02,2, 0)1 m (step size"0)01 m) are introduced at the 29
di!erent locations ¸

1
"0)1, 0)2,2, 2)9 m (step size"0)1 m). Totally 290 cases or patterns

(10 di!erent crack depths and 29 di!erent crack locations) are solved for the "rst three
eigenfrequencies. The patterns which consist of 290 sets of data are used to train the neural
network of Figure 9.

Because of the nature of the sigmoid activation function, i.e., saturation function, the
output variables should be scaled by the user, to be within the most active range of the
sigmoid function. Scaling rule that minimum and maximum values are set to 0)1 and 0)9 is



Figure 7. Crack identi"cation procedure on hybrid-neuro-genetic algorithm.

Figure 8. Model of the cracked clamped}free beam.
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usually suggested. Through some trials, a network with neuron arrangement (input}
hidden}output) of 2}13}3 trained with 100 000 iteration for the 290 patterns are concluded
to be the best for our application. In addition, to attain the stable convergence in the
training process the momentum coe$cient of equation (18) is set to 0)9 and to speed up the
convergence the adaptive learning rate of equation (20) is used. That is, if the error decreases
the learning rate is increased by 1)05. Otherwise, the learning rate is decreased by 0)7.

Mean-square error (MSE) is employed as a measurement of modelling performance. The
mathematical expression can be described as follows:

MSE"

+N
i/1

(e
i
)2

N
, (21)

where e
i
denotes an error at pattern i and N is the total number of patterns. As shown in

Figure 10 the "nal MSE is 0)0027.



Figure 9. Three-layer neural network with neuron arrangement of 2}13}3.

Figure 10. Neural network training output.
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The estimated eigenfrequencies from the network are compared to the target values as
shown in Figure 11. The target values are f *

1
, f *

2
and f *

3
in Figure 9 which are the reference

data or training data to have trained the neural network. Two hundred and ninty patterns
are arranged in 10 separate curves base on the value of a as shown in the Figure. The "rst
eigenfrequency f

1
is monotonously increasing as the crack location moves from the clamped

end to the free end when the crack depth a is kept constant. On the other hand, the second
and the third eigenfrequencies oscillate under the same situation.

It is notable that it can be challenged to estimate the crack depth and the location from
the measured eigenfrequencies directly from a new neural network whose input and output
data are eigenfrequencies and the crack parameters respectively. This neural network can be



Figure 11. Comparison of the estimated eigenfrequencies from the neural network to target values: * target
value; s estimated value.
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trained with the same patterns, which is used for the network of Figure 9. The di!erence is
that the input data are eigenfrequencies and the target data are crack parameters, a and
¸
1
for the new neural network. If the new neural network works the crack parameter can be

directly obtained from the measured frequencies. Unfortunately, however, the new neural
network has been con"rmed not to give proper solution. This is due to the fact that the
crack parameters cannot be one-to-one functions of the eigenfrequencies. This is the reason
why the damage detection researches [10}14] needed the modal shape information in
addition to the frequency information.

This is the basis for the optimization work utilizing genetic algorithm which will be
introduced in the next section which is necessary for the detection with frequency
information above.

5.2. CRACK IDENTIFICATION USING HYBRID NEURO-GENETIC TECHNIQUE

Using the results of the previous section, one can construct crack identi"cation problem
in terms of optimization with genetic algorithm. The "tness function for the genetic
algorithm to be maximized is de"ned as follows:

max
a, l

1

F"

1

a#+3
i/1

( f
i
!f *

i
)2

,
(22)

0)01)a)0)1, 0)1)¸
1
)2)9,

where a is the depth of a crack, ¸
1
is the distance from the clamped end, a is a constant used

to build a well-de"ned "tness function, f
1
, f

2
, f

3
are the "rst three eigenfrequencies which are



Figure 12. Flowchart of the hybrid neuro-genetic technique.
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functions of a and ¸
1
; and f *

1
, f *

2
, f *

3
are the "rst three measured, or reference

eigenfrequencies.
The general procedure is illustrated in Figure 12. The previously trained neural network

is utilized for the calculation of the "rst three frequencies as the functions of the crack depth
(a) and distance (¸

1
). Through several test problems, the genetic algorithm for this study is

set-up: population size, N"100; crossover rate, C"0)25; mutation rate, M"0)01. Also,
each parameter is represented as a 25-bit binary number, roulette wheel selection method is
adopted for the selection.

5.3. EXAMPLE PROBLEM 1: CLAMPED}FREE BEAM

A cracked clamped}free beam of Figure 8 is adopted as an example problem, two cases
are considered. (a) A crack of depth a of 0)02 m exists at ¸

1
of 0)3 m. The "rst three

eigenfrequencies are obtained computationally based on the theory described in section 3:
f *
1
"113)48 rad/s, f *

2
"714)46 rad/s, f *

3
"2007)56 rad/s. (b) A crack of depth a of 0)06 m

exists at ¸
1

of 0)1 m. The "rst three eigenfrequencies are obtained computationally;
f *
1
"110)34 rad/s, f *

2
"702)09 rad/s, f *

3
"1910)37 rad/s.

The hybrid neuro-genetic technique has been applied to this example problem. Figures 13
and 14 illustrate convergence history of the "tness function for case (a) and case (b)
respectively. The searches meet the convergence after 84 and 47 iterations for case (a) and
case (b) respectively. The result of Table 1 shows that the location and depth of a crack are
estimated by the hybrid neuro-genetic technique within 5% error. Also, the corresponding
eigenfrequencies are very close to the reference values within 0)15% error.



Figure 13. Generation history of Case (a).

Figure 14. Generation history of Case (b).
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5.4. EXAMPLE PROBLEM 2: CLAMPED*CLAMPED PLANE FRAME

A crack in the clamped}clamped plane frame, shown in Figure 15 is identi"ed using the
methodology of this study. The frame has the following basic dimensions; b]h"0)15 m]
0)2 m and B]H"0)008 m]0)016 m. The frame is discretized into 24 two-node "nite
elements. Since there is a vertical axis of symmetry, the crack location for the half of the
frame is considered. For the preparation of the learning data, nine sets of a crack of depth
a"0)0016, 0)0024,2, 0)008 m (step size"0)0008 m) are introduced at the 11 di!erent
locations ¸

1
"0)4125, 0)6875,2, 3)1625 m (step size"0)275 m). Totally 99 cases or

patterns are solved for the "rst three eigenfrequencies. These patterns are used to train the



TABLE 1

Crack identi,cation result: clamped}free beam

Case (a) Case (b)

Reference Result Relative Reference Result Relative
value value error (%) value value error (%)

a (m) 0)02 0)021 5 0)06 0)061 1)6
¸
1

(m) 0)3 0)310 3 1)0 0)997 !0)3
f
1

(rad/s) 113)48 113)38 !0)08 110)34 110)17 !0)15
f
2

(rad/s) 714)46 714)44 !0)003 702)09 701)88 !0)03
f
3

(rad/s) 2007)56 2007)61 0)002 1910)37 1910)40 0)001

Figure 15. Clamped}clamped plane frame.
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neural network of Figure 9. Figure 16 shows the training accuracy. The estimated
eigenfrequencies from network are compared to the target values in Figure 17.

For the application of the hybrid neuro-genetic technique, the genetic algorithm part is
set-up: population size, N"150; crossover-rate, C"0)35; and mutation rate, M"0)02.
Each parameter is represented as a 29-bit binary number, roulette wheel selection method is
adopted for the selection.

Two di!erent cases are considered. (a) A crack of depth a of 0)0048 m exists at ¸
1

of
1)5125 m. The "rst three eigenfrequencies are obtained computationally; f *

1
"266)73 rad/s,

f *
2
"1149)32 rad/s, f *

3
"1788)86 rad/s. (b) A crack of depth a of 0)0033 m exists at ¸

1
of

2)8875 m. The "rst three eigenfrequencies are obtained computationally; f *
1
"266)94 rad/s,

f *
2
"1151)63 rad/s, f *

3
"1845)38 rad/s. Figures 18 and 19 illustrate convergence history of

the "tness functions for case (a) and case (b) respectively.
The searches meet the convergence after 38 and 29 iterations for case (a) and case (b)

respectively. Table 2 shows the location and depth of a crack as estimated by the hybrid
neuro-genetic technique with 6)5% error. Also, the corresponding eigenfrequencies are very
close to the reference values within 0)18% error.



Figure 16. Neural network training output.

Figure 17. Comparison of the estimated eigenfrequencies from neural network to target values. * target value;
s estimated value.
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Figure 18. Generation history of Case (a).

Figure 19. Generation history of Case (b).

TABLE 2

Crack identi,cation result: clamped}clamped plane frame

Case (a) Case (b)

Reference Result Relative Reference Result Relative
value value error (%) value value error (%)

a (m) 0)0048 0)0051 6)25 0)0032 0)0033 3)12
¸
1

(m) 1)5125 1)5512 2)56 2)8875 2)8856 !0)06
f
1

(rad/s) 266)73 266)55 !0)06 266)94 266)47 !0)18
f
2

(rad/s) 1149)32 1149)18 !0)01 1151)63 1151)62 !0)001
f
3

(rad/s) 1788)86 1788)92 0)003 1845)38 1845)42 0)002
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6. CONCLUSIONS

A methodology of hybrid neuro-genetic technique for the crack identi"cation from the
eigenfrequencies is proposed based on the fact that a crack has an important e!ect on the
dynamic behavior of a structure. To estimate the crack parameters neural network and
genetic algorithm are combined into the proposed technique. The neural network is for the
approximation of the eigenfrequencies as the functions of the crack parameters and the
genetic algorithms is for "nding crack parameters which minimize the di!erence from the
measured eigenfrequencies.

The e!ectiveness of this technique is con"rmed by two example problems. The crack
parameters of the clamped}free beam problem are estimated within 5% error. In the case of
the clamped}clamped plane frame problem the estimation has shown agreement within
6)5% error. It can be concluded that good agreements are obtained between the estimated
crack depth and location and the reference ones.

The hybrid neuro-genetic technique can be generalized for general boundary condition
and structure to estimate the crack location and depth provided that the reference data, or
training data to train the neural network are properly prepared.
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